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Abstract This paper is concerned with the study of solution stability of a parametric
vector variational inequality, where mappings may not be strongly monotone. Under some
requirements that the operator of a unperturbed problem is monotone or it satisfies degree
conditions then we show that the solution map of a parametric vector variational inequality
is lower semicontinuous.
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1 Introduction

Vector variational inequality (VVI, for short) was introduced by Giannessi [6] in 1980. Later
on, VVI and its many extensions was studied by Chen [2,3], Kien [11], Lee [13] and Yang
[16] (see also the references given therein). The main topic of these papers is to establish
existence theorems.

Nowadays, VVIs appear in many important problems from theory to applications such as
vector optimization theory, economics and transportation. In such applications it is important
to understand behaviors of a solution of a vector variational inequality when the problem’s
data vary. In other words we wish to know properties of solutions of the so-called parametric
vector variational inequalities when parameters vary. One of our interests is to investigate
the continuity of the solution map of such a problem.

Let us assume that Rn and Rm are Euclidian spaces with the scalar product 〈, 〉 and the
Euclidean norm ‖ · ‖. We shall use the notation

Rm+ = {x = (x1, x2, . . . , xm) : xi ≥ 0 for all i}.
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Let L(Rn, Rm) be the set of continuous mappings from Rn into Rm . Suppose M,�
are metric spaces, K : � → 2Rn

is a set-valued mapping with closed convex values and
fi : M × Rn → Rn(i = 1, 2, . . . ,m) are continuous maps. Let f : M × Rn → L(Rn, Rm)

be a mapping which is defined by

f (µ, x)(u) = (〈 f1(µ, x), u〉, 〈 f2(µ, x), u〉, . . . , 〈 fm(µ, x), u〉).
Let C be a closed convex cone in Rm such that IntC �= ∅, where IntC denotes the interior

of C .
The parametric vector variational inequality involving the set K (λ), the mapping f (µ, ·)

and the cone C is the problem of finding x = x(µ, λ) ∈ K (λ) satisfying the condition

f (µ, x)(y − x) /∈ −IntC for all y ∈ K (λ). (1)

We shall denote problem Eq. (1) briefly by VVI( f (µ, ·), K (λ)) and S(µ, λ) stands for
its solution set corresponding to parameter (µ, λ). Thus S : M × � → 2Rn

is a set-valued
map which is called the solution map of Eq. (1). Given a parameter (µ0, λ0) ∈ M ×�, we
assume that S(µ0, λ0) �= ∅, that is, there is a point x0 ∈ S(µ0, λ0) such that

f (µ0, x0)(y − x0) /∈ −IntC for all y ∈ K (λ0). (2)

Our main concern is to investigate the behaviour of S(µ, λ) when (µ, λ) vary around
(µ0, λ0).

Recently Lee et al. [14] have shown that if f is strongly monotone and the set-valued map
K has the Aubin property at every point (λ0, x0), where x0 ∈ S(µ0, λ0), then the solution
map S(µ, λ) is Hölder-Lipschitz continuous with respect to (µ, λ) (see [14, Theorem 5.1]).
To obtain this result the authors had to use the Banach contractive theorem and the results
given by [17].

The situation will become complicated when the hypothesis on the strong monotonicity is
dropped. In this case, it seems difficulty to use the techniques in the proof of Theorem 5.1 in
[14], because the strong monotonicity of f played an essential role in establishing the proof.

The aim of this paper is to establish some results on the solution stability of the parametric
vector variational inequality Eq. (1) without strong monotonicity of f . In order to obtain
the result we have to derive a new scheme for the proof by using some facts on the degree
theory and a result on a relation between the Aubin property and the Hölder property of mul-
tifunctions K . Using this scheme, we show that if the mapping f (µ0, ·) of the unpurturbed
problem is strictly monotone or it satisfies some requirement related to degree theory, then
the solution map is lower semicontinous.

The rest of the paper consists of two sections. Section 1 is devoted to a result on the
lower semicontinuity of the solution set under hypotheses relating to strict monotonicity of
mappings of the unperturbed problem. In Sect. 2 we give sufficient conditions for the lower
semicontinuity of the solution map with requirements on the degree of mappings.

2 A monotone-operator approach

In this section we first establish some auxiliary results on a relation between the solution set
of a vector variational inequality and the solution set of a scalar variational inequality.

Let us assume that � is a closed convex subset in Rn and C be a closed convex cone in
Rm with IntC �= ∅. We shall denote by L(Rn, Rm) the set of all continuous mapping from
Rn into Rm and C∗ the polar cone of C , that is
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C∗ = {z∗ ∈ Rm : 〈z∗, z〉 ≥ 0 for all z ∈ C}.
Putting C∗+ = C∗ \ {0} we obtain from the bipolar theorem (see, e.g., [8]) that

z ∈ −IntC ⇐⇒ 〈z∗, z〉 < 0 for all z∗ ∈ C∗+. (3)

Suppose hi : � → Rn(i = 1, 2 . . . ,m) are continuous mappings and h : � →
L(Rn, Rm) is defined by

h(x)(u) = (〈h1(x), u〉, 〈h2(x), u〉, . . . , 〈hm(x), u〉).
Consider the following VVI(h,�):

Find x0 ∈ � such that h(x0)(x − x0) /∈ −IntC for all x ∈ �. (4)

In other form, Eq. (4) is equivalent to the problem

Find x0 ∈ � such that {h(x0)(x − x0) : x ∈ �} ∩ (−IntC) = ∅. (5)

For each ξ ∈ C∗ \ {0} we consider the following variational inequality VI(ξh,�):

Find x0 ∈ � such that
m∑

i=1

ξi 〈hi (x0), x − x0〉 ≥ 0 for all x ∈ �. (6)

This problem can be formulated by the term of generalized equations

Find x0 ∈ � such that 0 ∈
m∑

i=1

ξi hi (x0)+ N�(x0), (7)

where N�(x0) is the normal cone of the set � at x0 which defined by

N�(x) =
{ {x∗ ∈ Rn : 〈x∗, y − x〉 ≤ 0 ∀y ∈ �} if x ∈ �

∅, otherwise.

Let us denote by S(VVI) and S(VI)ξ the solution sets of Eqs. (4) and (6), respectively.
The following lemma gives a relation between the solution sets of Eqs. (4) and (6).

Lemma 2.1 (C. f. [13, Theorem 2.1]) Suppose hi are continuous for i = 1, 2, . . . ,m. The
following assertions hold:

(a)
⋃

ξ∈C∗+

S(VI)ξ = S(VVI). (8)

(b) S(VVI) is a closed set.

Proof (a) Suppose x0 is a point of
⋃
ξ∈C∗+ S(VI)ξ . Then there exists ξ ∈ C∗+ such that x0

is a solution of VI(ξh,�), that is Eq. (6) holds. By Eq. (3), it follows that Eq. (4) is
satisfied. As x0 is arbitrary, we have

⋃
ξ∈C∗+ S(VI)ξ ⊆ S(VVI). Conversely, take any

x0 ∈ S(VVI). By Eq. (5) we have

{h(x0)(x − x0) : x ∈ �} ∩ (−IntC) = ∅.
By the separation theorem (see [7, Theorem 1, p. 163]) there exists a functional ξ ∈
Rm \ {0} such that

〈ξ, h(x0)(x − x0)〉 ≥ 〈ξ, u〉
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for all x ∈ � and u ∈ −IntC . Put x = x0 we have 〈ξ, u〉 ≤ 0 for all u ∈ −IntC . This
implies that 〈ξ, u〉 ≥ 0 for all u ∈ C . Consequently, ξ ∈ C∗+. Thus we have shown that
there exists ξ ∈ C∗+ such that

〈ξ, h(x0)(x − x0)〉 ≥ 0 for all x ∈ �.
Hence x0 ∈ ⋃

ξ∈C∗+ S(VI)ξ . It follows that
⋃
ξ∈C∗+ S(VI)ξ ⊇ S(VVI) and Eq. (8) is

obtained.
(b) Since A := Rn \ (−IntC) is a closed set, the set

D(x) := {y ∈ � : f (y)(x − y) ∈ A}
is closed. It is clear that S(VVI) = ∩x∈�D(x). Hence S(VVI) is a closed set. ��

We now return to problem Eq. (1). For each ξ ∈ C∗+ we denote by Sξ (µ, λ) the solution
set of the generalized equation

0 ∈
m∑

i=1

ξi fi (µ, x)+ NK (λ)(x).

By lemma 2.1, for each (µ, λ) ∈ M ×�, we have
⋃
ξ∈C∗+ Sξ (µ, λ) = S(µ, λ).

Given a parameter (µ0, λ0) ∈ M × �, we assume that S(µ0, λ0) �= ∅. Taking any
x0 ∈ S(µ0, λ0), we see that (λ0, x0) ∈ GrphK and Eq. (2) hods. By Lemma 2.1, there exists
a point ξ0 ∈ C∗+ such that

0 ∈
m∑

i=1

ξ0
i fi (µ0, x0)+ NK (λ0)(x0). (9)

Recall that the set-valued mapping K : � → 2Rn
has the Aubin property of order α > 0

at a point (λ0, x0) ∈ grphK if there exist positive constants k, ε0 and β0 such that

K (λ′) ∩ (x0 + ε0 B̄) ⊆ K (λ)+ kd(λ′, λ)α B̄ ∀ λ′, λ ∈ B(λ0, β0). (10)

Here B̄ is the closed unit ball of Rn and B(λ0, β) is an open ball with center at λ0 and
radius β, in the metric space �. If K (·) satisfies property Eq. (10) for α = 1 then K (·) is
said to be pseudo-Lipschitz continuous at (λ0, x0). Let E be a subset in Rn and g : E → Rn

be a mapping. We say that g strictly monotone on E if for any x1, x2 ∈ E with x1 �= x2, one
has 〈g(x1)− g(x2), x1 − x2〉 > 0.

A multifunction P : X → 2Y from a topological space X to a topological space Y is said
to be lower semicontinuous at x0 ∈ X if for any open set V in Y satisfying P(x0) ∩ V �= ∅,
there exists a neighborhood U of x0 such that P(x) ∩ V �= ∅ for all x ∈ U .

We are ready to state the first result.

Theorem 2.2 Suppose C is a closed convex cone in Rm+, S(µ0, λ0) is bounded, X0 is a neigh-
borhood of S(µ0, λ0) and M0 × �0 is a neighborhood of (µ0, λ0). Let fi : M0 × X0 →
Rn(i = 1, 2, . . . ,m) be continuous mappings and K : �0 → 2Rn

be a multifunction which
satisfy conditions:

(i) fi (µ0, ·) : X0 ∩ K (λ0) → Rn is strictly monotone for all i = 1, 2, . . . ,m;
(ii) for each x0 ∈ S(µ0, λ0), K has the Aubin property of order α > 0 at the point (λ0, x0).

Then there exist a neighborhood U0 × V0 of (µ0, λ0) and a bounded open neighborhood
Q0 of S(µ0, λ0) such that the following assertions hold:
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(a) The solution map S : U0 × V0 → 2Q0 has nonempty values.
(b) The solution map S is lower semicontinuous at (µ0, λ0).

Proof Note that since fi (µ0, ·) is continuous, S(µ0, λ0) is closed. Hence S(µ0, λ0) is a
compact set. Taking any x0 ∈ S(µ0, λ0), we see that (λ0, x0) ∈ GrphK and there exists
ξ0 ∈ C∗+ such that Eq. (9) is fulfilled. By (i i), there exist constants k, ε0 and β0 such that
Eq. (10) holds. For each ε > 0 we put

Kε(λ) = K (λ) ∩ (x0 + ε B̄). (11)

The following lemma plays an important role in the proof of our theorem which is an
extension of Lemma 2.3 in [1].

Lemma 2.3 For any ε in (0, ε0] and any β with 0 < β < min{β0, (
ε

4k )
1/α}, the multifunc-

tion Kε defined by Eq. (11), is Hölder continuous with constant 5k on the ball x0 + β B̄,
that is

Kε(λ
′) ⊆ Kε(λ)+ 5kd(λ′, λ)α B̄. (12)

for all λ, λ′ ∈ B(λ0, β).

Proof We shall use similar arguments as in the proof of [1].
Put λ′ = λ0 in Eq. (10), we obtain that, for all λ ∈ B(λ0, β) there exists a point xλ ∈ K (λ)

such that

‖xλ − x0‖ ≤ kd(λ0, λ)
α < ε/2. (13)

This implies that Kε(λ) is nonempty for all λ ∈ B(λ0, β). Take any λ′, λ ∈ B(λ0, β) and
x ′ ∈ Kε(λ′). We have to show that there exists a point x ′′ ∈ Kε(λ) such that

‖x ′ − x ′′‖ ≤ 5kd(λ′, λ)α (14)

which proves Eq. (12).
It follows from Eq. (10) that there exists x ∈ K (λ) such that

‖x ′ − x‖ ≤ kd(λ′, λ)α ≤ 5kd(λ′, λ)α.

If x ∈ x0 + ε B̄ then x ∈ Kε(λ). By putting x ′′ = x we obtain Eq. (14).
Let us assume that x /∈ x0 + ε B̄. This means that

r := ‖x − x0‖ > ε.

Choose xλ ∈ K (λ) such that Eq. (13) holds. By the convexity of K (λ), the segment
[x, xλ] ⊂ K (λ). Take a point x ′′ ∈ [x, xλ] such that ‖x ′′ − x0‖ = ε, belongs to K (λ). Hence
x ′′ ∈ Kε(λ). Note that such a point x ′′ always exists. Namely, x ′′ = (1 − t)x + t xλ, where
t ∈ (0, 1).

Put ρ = ‖x − x ′′‖, d = r − ε. Then we have

ε = ‖x ′′ − x0‖ = ‖(1 − t)(x − x0)+ t (xλ − x0)‖ ≤ (1 − t)r + t‖xλ − x0‖.
This implies that

t (r − ‖xλ − x0‖) ≤ r − ε.

Hence

t ≤ r − ε

r − ε/2
.
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From this relation,

ρ := ‖x ′′ − x‖ = t‖x − xλ‖ ≤ t (‖x − x0‖ + ‖xλ − x0‖)
≤ t (r + ε/2) ≤ (r + ε/2)

r − ε

r − ε/2
.

It follows that ‖x ′′−x‖ = ρ ≤ 4(r −ε) = 4d . Since d ≤ ‖x −x ′‖, ‖x ′′−x‖ ≤ 4‖x −x ′‖.
Finally we have

‖x ′ − x ′′‖ ≤ ‖x ′′ − x‖ + ‖x − x ′‖ ≤ 5‖x − x ′‖ ≤ 5kd(λ′, λ)α.

The lemma is proved.
We now Choose positive constants s and δ such that x0 + s B̄ ⊂ (x0 + ε0 B̄) ∩ X0,

kd(λ0, λ)
α < s for all λ ∈ B(λ0, δ) ⊂ B(λ0, β0). Hence Eq. (10) implies

K (λ′) ∩ (x0 + s B̄) ⊆ K (λ)+ kd(λ, λ′)α B̄ (15)

for all λ, λ′ ∈ B(λ0, δ).
Choose a number β such that 0 < β < min{δ, ( s

4k )
1
α }. By Lemma 2.3, we have

K (λ′) ∩ (x0 + s B̄) ⊆ K (λ) ∩ (x0 + s B̄)+ 5kd(λ′, λ)α B̄ (16)

for all λ, λ ∈ B(λ0, β). Thus for all λ′, λ ∈ B(λ0, β), Eqs. (15) and (16) are fulfilled.
Putting λ′ = λ0 in Eq. (15) we see that for each λ ∈ B(λ0, β) there exists zλ ∈ K (λ) such

that ‖zλ − x0‖ ≤ kd(λ, λ0)
α < s. Consequently K (λ) ∩ B(x0, s) �= ∅ for all λ ∈ B(λ0, β).

For each (µ, λ) ∈ M0 × B(λ0, β) we consider the generalized equation

0 ∈ g(µ, x)+ NK (λ)∩B̄(x0,s)(x)

where g(µ, x) := ∑m
i=1 ξ

0
i fi (µ, x). We claim that there exists a neighborhood U0 × V0 of

(µ0, λ0) such that

0 /∈ (
g(µ, ·)+ NK (λ)∩B̄(x0,s)(·)

)
(∂B(x0, s)) (17)

for all (µ, λ) ∈ U0 × V0, where ∂B(x0, s) is the boundary of B(x0, s). Indeed, suppose the
assertion is false. Then we can find sequences µn → µ0, λn → λ0 and {xn} ⊂ ∂B(x0, s) ∩
K (λn) such that

〈g(µn, xn), z − xn〉 ≥ 0 ∀ xn ∈ K (λn) ∩ B̄(x0, s). (18)

Since ∂B(x0, s) is a compact set, we can assume that xn → x̄ . Substituting λ′ = λn ,
λ = λ0 into Eq. (16), we see that, for each n, there exists yn ∈ K (λ0) ∩ B̄(x0, s) such that

‖xn − yn‖ ≤ 5kd(λn, λ0)
α.

Since K (λ0)∩ B̄(x0, s) is compact, without loss of generality we may assume that yn →
y0 ∈ K (λ0)∩B̄(x0, s). From the above, we have xn → y0. Hence x̄ = y0 ∈ K (λ0)∩B̄(x0, s).
Putting λ′ = λ0, λ = λn in Eq. (16), we see that for each n there exists a point zn ∈
K (λn) ∩ B̄(x0, s) such that zn → x0. Putting z = zn in Eq. (18) and letting n → ∞ we
obtain 〈g(µ0, x̄), x0 − x̄〉 ≥ 0. Since fi (µ0, ·) is strictly monotone and ξ0 ∈ Rn+ \ {0}, we
see that g(µ0, ·) is also strictly monotone. It is noted that x0 �= x̄ . Hence we have

〈g(µ0, x0), x0 − x̄〉 > 〈g(µ0, x̄), x0 − x̄〉 ≥ 0.

This contradicts the fact that x0 satisfies Eq. (9). Thus the claim is proved.
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We now can choose neighborhoods U ⊂ M0 of µ0 and V ⊂ B(λ0, β) of λ0 such that
Eq. (17) is valid. For each (µ, λ) ∈ U × V we consider the generalized equation

0 ∈ g(µ, x)+ NK (λ)∩B̄(x0,s)(x). (19)

Since g(µ, ·) is continuous and K (λ) ∩ B̄(x0, s) is compact, equation Eq. (19) has a
solution x̂ = x̂(µ, λ) ∈ K (λ) ∩ B̄(x0, s). By Eq. (17), x̂ ∈ int B̄(x0, s). Hence

NK (λ)∩B̄(x0,s)(x) = NK (λ)(x̂).

Consequently, x̂ is a solution of the equation

0 ∈ g(µ, x)+ NK (λ)(x).

This implies that x̂ ∈ Sξ0(µ, λ) ∩ B(x0, s). Hence we also have S(µ, λ) ∩ B(x0, s) �= ∅.
So far we have shown that for each x0 ∈ S(µ0, λ0) there exist a open ball B(x0, s) and

a neighborhood Ux0 × Vx0 of (µ0, λ0) such that S(µ, λ) ∩ B(x0, s) �= ∅ for all (µ, λ) ∈
Ux0 × Vx0 . As S(µ0, λ0) is a compact set, there exists x1, x2, . . . , xk such that S(µ0, λ0) ⊆
∪n

i=1 B(xi , si ). Put Q0 = ∪k
i=1 B(xi , si ),U0 = ∩k

i=1Uxi and V0 = ∩k
i=1Vxi . It is clear that

U0, V0 and Q0 satisfy assertion (a) of the theorem. It remains to prove assertion (b). Suppose
W is a open set in Q0 such that S(µ0, λ0) ∩ W �= ∅. Note that W = Q0 ∩ G, where G is
a open set in Rn . Take x0 ∈ S(µ0, λ0) ∩ W . By (i i) there exist constants k, ε0 and β0 such
that Eq. (10) is fulfilled. We can choose ε0 such that B̄(x0, ε0) ⊂ W . We now use the same
arguments as in the proof of part (a) to show that there exist a ball B(x0, ŝ) ⊂ B(x0, ε0),
a neighborhood Û × V̂ ⊂ U0 × V0 of (µ0, λ0) such that S(µ, λ) ∩ B(x0, ŝ) �= ∅ for all
(µ, λ) ∈ Û × V̂ . This implies that S(µ, λ) ∩ W �= ∅ for all (µ, λ) ∈ Û × V̂ . Consequently,
S is lower semicontinuous at (µ0, λ0). The proof of the theorem is complete. ��

In order to make readers to illustrate the Theorem 2.2, we give the following example.

Example 2.4 Let (µ0, λ0) = (−1, 1),M0 × �0 ⊂ R2 be a neighborhood of (µ0, λ0) and
X0 = R2. Let f = ( f1, f2) and f1, f2 : M0 × X0 → R2 be defined by

f1(µ, x) = (x1, µx2 + x2
2 ), f2(µ, x) = (x1 + (1 − µ)x2, x2), x = (x1, x2)

and K : �0 → R2 defined by

K (λ) = {(x1, x2) : x2 ≥ −1, x1 + x2 = λ}.
Then all conditions of Theorem 2.2 are satisfied and u0 = (0, 1) is a solution of

VVI( f (µ0, ·), K (λ0));
In fact, we have f1(µ0, x) = (x1,−x2 + x2

2 ) and

K (λ0) = {(x1, x2) : x2 ≥ 1, x1 + x2 = 1}.
For any u = (u1, u2), v = (v1, v2) ∈ K (λ0), we see that u2 + v2 ≥ 2. Hence

〈 f1(µ0, u)− f1(µ0, v), u − v〉 = (u1 − v1)
2 + (u2 − v2)

2(u2 + u2 − 1) > 0

whenever u �= v. This implies that f1(µ0, ·) is strictly monotone. When µ0 = −1 we have
f2(µ0, x) = (x1, x2) which is also strictly monotone. Hence condition (i) of Theorem 2.2 is
fulfilled.

It is clear that f1(·, ·) and f2(·, ·) are continuous. On the other hand, for eachλ ∈ �0, K (λ)
is a closed convex set. By [15], the map K (·) is Lipshitz continuous. Hence condition (i i) in
Theorem 2.2 is valid. Thus all conditions of Theorem 2.2 are fulfilled.
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Taking ξ = (1, 0) we see that if u ∈ K (λ) is a solution of VI( f1(µ, ·), K (λ)) then it is
also a solution of VVI( f (µ, x), K (λ)).

On the other hand, u ∈ K (λ) is a solution of VI( f1(µ, ·), K (λ)) iff

u = �K (λ)(u − ρ f1(µ, u))

for some ρ > 0. Here �K (λ)(x) stands for the metric projection of a point x ∈ R2 onto the
set K (λ). Let x = (x1, x2) be any point in R2. By a simple computation, we obtain

�K (λ)(x) =
(
λ+ x1 − x2

2
,
λ+ x2 − x1

2

)
.

It follows that

�K (λ)(x − ρ f (µ, x)) = 1

2

(
λ+ (1 − ρ)x1 − (1 − µρ)x2 + ρx2

2 , λ

−(1 − ρ)x1 + (1 − µρ)x2 − ρx2
2

)
.

Hence

(x1, x2) = �K (λ)(x − ρ f (µ, x))

if and only if
{
λ+ (1 − ρ)x1 − (1 − µρ)x2 + ρx2

2 = 2x1

λ− (1 − ρ)x1 + (1 − µρ)x2 − ρx2
2 = 2x2.

It is equivalent to
{

x2
2 + (1 + µ)x2 − λ = 0

x1 + x2 = λ.
(24)

When (µ0, λ0) = (−1, 1) the system has the unique solution u0 = (0, 1) ∈ K (λ0).
��

3 A degree-theoretic approach

In this section we shall provide sufficient conditions for the lower semicontinuity of the
solution map of problem Eq. (1). Here the conditions are related to the degree of mappings
which guarantee the lower semicontinuity of the solution map S. Such a degree-theoretic
approach for the scalar case has been used by [10].

Before stating our result we recall some notions and facts of the degree theory. The notions
and events of the degree theory can be found in [4,5,12,18].

Let D be an open bounded set in Rn . We denote by ∂D the boundary of D and D̄ the
closure of D. Let C1(D̄) = C1(D) ∩ C(D̄), where C1(D) is the set of all continuously
differentiable functions φ : D → Rn and C(D̄) is the set of all continuous functions on D̄.

For each φ ∈ C(D̄) we put ‖φ‖ = maxx∈D̄ ‖φ(x)‖.
We will denote by dist(x, A) the distance form a point x ∈ Rn to a set A ⊂ Rn .
If φ ∈ C1(D̄), Jφ(x) = det(gradφ(x)) and Zφ = {x ∈ D̄ : Jφ(x) = 0} which is called

the crease of φ.
It is well known that if φ ∈ C1(D̄) and p /∈ φ(Zφ) then the set φ−1(p) is finite (see, for

instance [12, Theorem 1.1.2]).
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Definition 3.1 (a) Let φ ∈ C1(D̄) and p /∈ φ(Zφ) ∪ φ(∂D). The degree of φ at p with
respect to D is defined by

deg(φ, D, p) :=
∑

x∈φ−1(p)

sgn(Jφ(x)). (20)

(b) Let φ ∈ C1(D̄) and p /∈ φ(∂D) such that p ∈ φ(Zφ). We define the degree of φ at p
with respect to D , to be the number deg(φ, D, q) for any q /∈ φ(Zφ) ∪ φ(∂D) such
that |p − q| < dist(p, φ(∂D)).

(c) Let φ ∈ C(D̄) and p ∈ Rn\φ(∂D). We define deg(φ, D, p), the degree of φ at p
with respect to D, to be deg(ψ, D, p) for any ψ ∈ C1(D̄) such that |ψ(x)− φ(x)| <
dist(p, φ(∂D)) for all x ∈ D̄.

The following list summarizes some properties most frequently used.

Theorem 3.2 Suppose that φ ∈ C(D̄) and p /∈ φ(∂D). Then the following properties hold:

(a) (Normalization) If p ∈ D then deg(I, D, p) = 1, where I is the identity mapping.
(b) (Existence) If deg(φ, D, p) �= 0 then there is x ∈ D such that φ(x) = p.
(c) (Additivity) Suppose that D1 and D2 are disjoint open sets of D. If p /∈ φ(D̄\(D1 ∪ D2)

then

deg(D, f, p) = deg(φ, D1, p)+ deg(φ, D2, p).

(d) (Homotopy invariance) Suppose that H : [0, 1] × D → Rn is continuous. If p /∈
H(t, ∂D) for all t ∈ [0, 1] then deg(H(t, .), D, p) is independent of t .

(e) (Excision) If D0 is a closed set of D and p /∈ φ(D0) then deg(φ, D, p) =
deg(φ, D\D0, p).

Let us recall that x0 is an isolated solution of an equation φ(x) = 0 if there exists a
bounded open neighborhood G of x0 such that x0 is the unique solution in Ḡ. In particular,
we have 0 /∈ φ(∂G). Assume that G1,G2 are open neighborhoods of x0 in G. By excision,
we have d(φ,G1, 0) = d(φ,G2, 0). The common value d(φ, Q, 0) for open neighborhoods
Q ⊂ G of x0 is called the index of φ at the isolated solution x0 and denoted by Ind(φ, x0).

We now return to problem Eq. (1). For each ξ ∈ C∗+ and ρ > 0 we define a mapping Fξ,ρ
by the formula

Fξ,ρ(µ, λ, x) = x −�K (λ)

(
x − ρ

m∑

i=1

ξi fi (µ, x)

)
,

where�K (λ)(z) is the metric projection of a point z ∈ Rn onto the set K (λ). It is well known
that x ∈ Sξ (µ, λ) if and only if 0 = Fξ,ρ(µ, λ, x) for someρ > 0. Hence from Lemma 2.1 we
see that x0 ∈ S(µ0, λ0) if and only if there exists ξ0 ∈ C∗+ such that Fξ0,ρ(µ0, λ0, x0) = 0.
We shall call ξ0 a functional corresponding to x0.

We have the following result.

Theorem 3.3 Suppose x0 ∈ S(µ0, λ0) is an isolated solution, ξ0 is a functional correspond-
ing to x0, X0 is a bounded open neighborhood of x0 and M0 × �0 is a neighborhood of
(µ0, λ0). Let fi : M0 × X0 → Rn be continuous mappings and K : �0 → 2Rn

be a
multifunction which satisfy conditions:

(i) the map π : �0 × X0 → Rn defined by π(λ, z) = �K (λ)(z) is continuous;

123



444 J Glob Optim (2010) 46:435–446

(ii) there exists ρ0 > 0 such that

Ind(Fξ0,ρ(µ0, λ0, .), x0) �= 0 ∀ρ ∈ (0, ρ0].
Then there exist a neighborhood U0 ofµ0, a neighborhood V0 of λ0 and an open bounded

neighborhood Q0 of x0 such that the following assertions are fulfilled:

(a) The solution map S : U0 × V0 → 2Q0 has nonempty values.
(b) The solution map S is lower semicontinuous at (µ0, λ0).

Proof Choose ρ ∈ (0, ρ0] sufficiently small such that

x0 − ρ

m∑

i=1

ξ0
i fi (µ0, x0) ∈ X0.

By the continuity of fi , there exists a neighborhood M1 ⊂ M0 of µ0 and a neighborhood
X1 ⊂ X0 of x0 such that

x − ρ

m∑

i=1

ξ0
i fi (µ, x) ∈ X0

for all x ∈ X1 and µ ∈ M1. By (i), the map Fξ0,ρ(µ, λ, x) is continuous on M1 ×�0 × X1.
Recall that

Fξ0,ρ(µ, λ, x) = x −�K (λ)

(
x − ρ

m∑

i=1

ξ0
i fi (µ, x)

)
.

From (i i) there exists a bounded open neighborhood X2 ⊂ X1 of x0 such that the equation
Fξ0,ρ(µ0, λ0, x) = 0 has the unique solution x0 in X̄2. Besides,

d(Fξ0,ρ(µ0, λ0, ·), X2, 0) �= 0.

This implies that for eachw ∈ ∂X2, Fξ0,ρ(µ0, λ0, w) �= 0.Putting uw= Fξ0,ρ(µ0, λ0, w)

and rw = 1
2‖uw‖ > 0, we see that 0 /∈ B(uw, rw). By the continuity of Fξ0,ρ(µ0, λ0, w),

there exist a neighborhood Xw of w and a neighborhood Uw × Vw of (µ0, λ0) such that
Fξ0,ρ(µ, λ, x) ∈ B(uw, rw) for all (µ, λ) ∈ Uw × Vw and x ∈ Xw . Since ∂X2 is compact,
there exist points w1, w2, ..., wk such that ∂X2 ⊆ ∪k

i=1 Xwi . Put Q0 = X2,U0 = ∩Uwi and
V0 = ∩Vwi . We want to show that Q0,U0 and V0 satisfy the conclusion of the theorem.

Fixing any (µ, λ) ∈ U0 × V0, we consider the homotopy H : [0, 1] × X̄2 → 2Rn

defined by H(t, x) = (1 − t)Fξ0,ρ(µ0, λ0, x) + t Fξ0,ρ(µ, λ, x). For each w ∈ ∂X2 then
w ∈ Xwi for some i . Since (µ, λ) ∈ Uwi × Vwi , we have Fξ0,ρ(µ, λ,w) ∈ B(uwi , rwi ) and
Fξ0,ρ(µ0, λ0, w) ∈ B(uwi , rwi ). By the convexity of B(uwi , rwi ) we have

(1 − t)Fξ0,ρ(µ0, λ0, x)+ t Fξ0,ρ(µ, λ, x) ∈ B(uwi , rwi ).

As 0 /∈ B(uwi , rwi ), it follows that

0 /∈ H(t, w) = (1 − t)Fξ0,ρ(µ0, λ0, x)+ t Fξ0,ρ(µ, λ, x)

for all t ∈ [0, 1] and w ∈ ∂X2. By (d) of Theorem 3.2, we have

d(Fξ0,ρ(µ, λ, ·), X2, 0) = d(Fξ0,ρ(µ0, λ0, ·), X2, 0) �= 0.

By (b) in Theorem 3.2, we can find a point x = x(µ, λ) ∈ X2 such that Fξ0,ρ(µ, λ, x) = 0.
This implies that x(µ, λ) ∈ Sξ0(µ, λ)∩ X2 ⊂ S(µ, λ)∩ Q0. Hence assertion (a) is proved.
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Let us prove (b). Suppose G is an open set in Q0 such that S(µ0, λ0)∩ G �= ∅. Note that
G = Q0 ∩ D, where D is an open set in Rn . By the uniqueness of x0 in Q0(= X2), we have
x0 ∈ G. By using the same procedure as in the proof of assertion (a), we can show that there
exists a neighborhood X̂2 ⊂ G and a neighborhood Û × V̂ ⊂ U0 × V0 of (µ0, λ0) such that
Sξ0(µ, λ)∩ X̂2 �= ∅ for all (µ, λ) ∈ Û × V̂ . Note that ∪ξ∈C∗+ Sξ (µ, λ) = S(µ, λ). Hence we

have S(µ, λ) ∩ G �= ∅ for all (µ, λ) ∈ Û × V̂ . Consequently, S is lower semicontinuous at
(µ0, λ0). The proof of the theorem is complete. ��
In the above theorem, condition (i) is a key hypothesis. In order to apply it one needs to
verify this requirement. The following proposition provides a sufficient condition for the
fulfillment of condition (i).

Proposition 3.4 Suppose K has the Aubin property of order α > 0 at (λ0, x0). Then there
exist neighborhoods X0 of x0 and V0 of λ0 such that the mapping π : V0 × X0 → Rn defined
by π(λ, z) = �K (λ)(z) is continuous on V0 × X0.

Proof According to [9, Theorem 3.1] (see also [17, Lemma 1.1]), there exists a neighborhood
X0 of x0 and V0 of λ0 and a constant k0 > 0 such that

‖�K (λ)(z)−�K (λ′)(z)‖ ≤ kd(λ, λ′)
α
2 (21)

for all z ∈ X0 and λ, λ′ ∈ V0. It remains to prove that the map π(λ, z) is continuous on
V0 × X0. In fact, taking any (λ, z) ∈ V0 × X0 and assume that zn → z, λn → λ. We want
to show that π(λn, zn) → π(λ, z). From Eq. (21) we have the following estimation

‖π(λn, zn)− π(λ, z)‖ = ‖�K (λn)(zn)−�K (λ)(z)‖
≤ ‖�K (λn)(zn)−�K (λ)(zn)‖ + ‖�K (λ)(zn)−�K (λ)(z)‖
≤ kd(λn, λ

′)
α
2 + ‖zn − z‖.

Hence ‖π(λn, zn) − π(λ, z)‖ → 0 as n → ∞. Consequently, π is continuous at (λ, z).
Since (λ, z) is arbitrary, π is continuous on V0 × X0. ��
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